Survivin is a mechanosensitive cell cycle regulator in vascular smooth muscle cells

biorxiv(2022)

引用 0|浏览12
暂无评分
摘要
Stiffened arteries are a pathology of atherosclerosis, hypertension, and coronary artery disease and a key risk factor for cardiovascular disease events. The increased stiffness of arteries triggers the hypermigration and hyperproliferation of vascular smooth muscle cells (VSMCs), leading to neointimal hyperplasia and accelerated neointima formation, but the mechanism of this trigger is not known. Our analyses of whole-transcriptome microarray data sets from mouse VSMCs cultured on stiff hydrogels simulating arterial pathology and from injured mouse femoral arteries revealed 80 genes that were differentially regulated (74 upregulated and 6 downregulated) relative to expression in control VSMCs cultured on soft hydrogels and in uninjured femoral arteries. A functional enrichment analysis revealed that these stiffness-sensitive genes are linked to cell cycle progression and proliferation. Furthermore, we found that survivin, a member of the inhibitor of apoptosis protein family, mediates stiffness-sensitive cell cycling and proliferation in vivo and in vitro as determined by gene network and pathway analyses, RT-qPCR, and immunoblotting. The stiffness signal is mechanotransduced via FAK and Rac signaling to regulate survivin expression, establishing a regulatory pathway for how the stiffness of the cellular microenvironment affects VSMC behaviors. Our findings indicate that survivin is necessary for VSMC cycling and proliferation and regulates stiffness-responsive phenotypes. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
mechanosensitive cell cycle regulator,muscle
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要