Interfacing picosecond and nanosecond quantum light pulses

arxiv(2022)

引用 0|浏览5
暂无评分
摘要
Light is a key information carrier, enabling worldwide high-speed data transmission through a telecommunication fibre network. This information-carrying capacity can be extended to transmitting quantum information (QI) by encoding it in single photons -- flying qubits. However, various QI-processing platforms operate at vastly different timescales. QI-processing units in atomic media, operating within nanosecond to microsecond timescales, and high-speed quantum communication, at picosecond timescales, cannot be efficiently linked due to orders of magnitude mismatch in the timescales or, correspondingly, spectral linewidths. In this work, we develop a large-aperture time lens using complex high-bandwidth electro-optic phase modulation to bridge this gap. We demonstrate coherent, deterministic spectral bandwidth compression of quantum light pulses by more than two orders of magnitude with high efficiency. It will facilitate large-scale hybrid QI-processing by linking the ultrafast and quasi-continuous-wave experimental platforms, which until now, to a large extent, have been developing independently.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要