Application of quasimetagenomics methods to define microbial diversity and subtype Listeria monocytogenes in dairy and seafood production facilities

MICROBIOLOGY SPECTRUM(2023)

引用 0|浏览11
暂无评分
摘要
Microorganisms frequently colonize surfaces within food production facilities. Detection of Listeria monocytogenes in this setting relies on culture-dependent methods, but the complex dynamics of bacterial interactions within these environments and their impact on pathogen detection remain largely unexplored. To address this challenge, we applied both 16S rRNA and shotgun quasimetagenomic (enriched microbiome) sequencing of swab culture enrichments from five seafood and seven dairy production environments. Utilizing 16S rRNA amplicon sequencing, we observed variability between 355 samples taken from these 12 production facilities and a distinctive microbiome for each environment. With shotgun quasimetagenomic sequencing, we were able to assemble L. monocytogenes metagenome-assembled genomes (MAGs) from 28 of the 32 culture-positive samples. We compared these MAGs to their corresponding whole-genome sequencing assemblies, which resulted in two polyphyletic clades consisting of L. monocytogenes lineages I and II with 13,195 and 25,556 single-nucleotide polymorphism sites, respectively. The remaining four MAGs did not produce sufficient genome coverage. To understand and establish limits for pathogen detection and subtyping using shotgun quasimetagenomics, these same data sets were downsampled in slilico to produce a titration series of abundances of L. monocytogenes and analyzed. Pathogen detection was achieved for all downsampled data sets, even those with only 3x genome coverage. This study contributes to the understanding of microbial diversity within food production environments and presents insights into the level of genome coverage needed in a metagenome sequencing data set to detect, subtype, and source track a foodborne pathogen
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要