Exposure to persistent organic pollutants alters the serum metabolome in non-obese diabetic mice

Metabolomics : Official journal of the Metabolomic Society(2022)

Cited 1|Views19
No score
Abstract
Introduction Autoimmune disorders such as type 1 diabetes (T1D) are believed to be caused by the interplay between several genetic and environmental factors. Elucidation of the role of environmental factors in metabolic and immune dysfunction leading to autoimmune disease is not yet well characterized. Objectives Here we investigated the impact of exposure to a mixture of persistent organic pollutants (POPs) on the metabolome in non-obese diabetic (NOD) mice, an experimental model of T1D. The mixture contained organochlorides, organobromides, and per- and polyfluoroalkyl substances (PFAS). Methods Analysis of molecular lipids (lipidomics) and bile acids in serum samples was performed by UPLC-Q-TOF/MS, while polar metabolites were analyzed by GC-Q-TOF/MS. Results Experimental exposure to the POP mixture in these mice led to several metabolic changes, which were similar to those previously reported as associated with PFAS exposure, as well as risk of T1D in human studies. This included an increase in the levels of sugar derivatives, triacylglycerols and lithocholic acid, and a decrease in long chain fatty acids and several lipid classes, including phosphatidylcholines, lysophosphatidylcholines and sphingomyelins. Conclusion Taken together, our study demonstrates that exposure to POPs results in an altered metabolic signature previously associated with autoimmunity.
More
Translated text
Key words
Environmental exposure,Exposomics,Metabolomics,Perfluorinated alkyl substances,Persistent organic pollutants,Type 1 diabetes
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined