Sequence-Based Plan Feasibility Prediction for Efficient Task and Motion Planning

RSS 2023(2023)

引用 0|浏览48
暂无评分
摘要
We present a learning-enabled Task and Motion Planning (TAMP) algorithm for solving mobile manipulation problems in environments with many articulated and movable obstacles. Our idea is to bias the search procedure of a traditional TAMP planner with a learned plan feasibility predictor. The core of our algorithm is PIGINet, a novel Transformer-based learning method that takes in a task plan, the goal, and the initial state, and predicts the probability of finding motion trajectories associated with the task plan. We integrate PIGINet within a TAMP planner that generates a diverse set of high-level task plans, sorts them by their predicted likelihood of feasibility, and refines them in that order. We evaluate the runtime of our TAMP algorithm on seven families of kitchen rearrangement problems, comparing its performance to that of non-learning baselines. Our experiments show that PIGINet substantially improves planning efficiency, cutting down runtime by 80% on problems with small state spaces and 10%-50% on larger ones, after being trained on only 150-600 problems. Finally, it also achieves zero-shot generalization to problems with unseen object categories thanks to its visual encoding of objects.
更多
查看译文
关键词
robotics,academic conference
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要