Surface crystallization mechanism of n-hexane droplets

Energy(2022)

Cited 1|Views0
No score
Abstract
Revealing the crystallization mechanism of alkane molecules is of great significance to promote the development of the natural gas liquefaction industry. Although many efforts have been made on the crystallization of chain molecules, the surface crystallization mechanism of short-chain alkanes has not yet been solved. In this paper, molecular dynamics simulations were employed to investigate the surface crystallization process of n-hexane nanodroplets and elucidate the surface crystallization mechanism. The results show that the crystallization process of supercooled heavy hydrocarbon droplets can be divided into two stages. The reduction of torsion energy and Lennard‒Jones energy makes important contributions to the droplet crystallization process. The molecules at the vapor-liquid interface tend to be arranged in an orderly manner, and the molecular principal axes are perpendicular to the interface. The molecules at the vapor-solid interface fluctuate strongly along their molecular axes. In addition, the entropy change value for the overall crystalline layer of n-hexane is approximately 1.4 times higher than that of the surface crystalline layer. It is proven that there is a significant energy gain in the surface crystalline layer, which is an important driving force for n-hexane crystallization.
More
Translated text
Key words
Heavy hydrocarbons,Surface crystallization,Molecular dynamics simulation,Interfacial free energy,Interfacial properties
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined