谷歌浏览器插件
订阅小程序
在清言上使用

A New Investigation on Optimization of Perforation Key Parameters Based on Physical Experiment and Numerical Simulation

Energy reports(2022)

引用 0|浏览8
暂无评分
摘要
Casing is inevitably damaged during perforation operation, and the perforation parameters will have a significant impact on the degree of casing damage, which will directly affect the stability of casing structure in the process of hydraulic fracturing. A three-dimensional numerical model, which was composed of perforating charge, casing–cement sheath, and formation and consistent with the engineering practice, was established, considering the dynamic characteristics of materials in the process of explosion impact. The numerical simulation results were verified by physical model tests and showed that the stress superposition between adjacent perforations increases the damage degree of casing. Perforation density and phase angle directly affect the range of stress superposition area, with the increase of perforation density or decrease of phase angle, the damage area and damage coefficient of casing are increasing. Based on the results of numerical simulation, an innovative perforation parameter optimization method considering casing yield strength was proposed, which could effectively reduce the stress superposition area between adjacent perforations and keep casing damage within a reasonable range. Finally, perforation parameter optimization based on real wells was carried out, and analysis results showed that the casing stress was lower than the yield strength after parameter optimization, which could ensure the stability of the casing. The research results can provide an important reference for the optimization of perforation design and field operation.
更多
查看译文
关键词
Casing damage,Perforation,Parameter optimization,Numerical simulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要