Data Mining with Comprehensive Oppositional Based Learning for Rainfall Prediction

Computers, Materials & Continua(2023)

Cited 0|Views17
No score
Abstract
Data mining process involves a number of steps from data collection to visualization to identify useful data from massive data set. the same time, the recent advances of machine learning (ML) and deep learning (DL) models can be utilized for effectual rainfall prediction. With this motivation, this article develops a novel comprehensive oppositional moth flame optimization with deep learning for rainfall prediction (COMFO-DLRP) Technique. The proposed CMFO-DLRP model mainly intends to predict the rainfall and thereby determine the environmental changes. Primarily, data pre-processing and correlation matrix (CM) based feature selection processes are carried out. In addition, deep belief network (DBN) model is applied for the effective prediction of rainfall data. Moreover, COMFO algorithm was derived by integrating the concepts of comprehensive oppositional based learning (COBL) with traditional MFO algorithm. Finally, the COMFO algorithm is employed for the optimal hyperparameter selection of the DBN model. For demonstrating the improved outcomes of the COMFO-DLRP approach, a sequence of simulations were carried out and the outcomes are assessed under distinct measures. The simulation outcome highlighted the enhanced outcomes of the COMFO-DLRP method on the other techniques.
More
Translated text
Key words
Data mining, rainfall prediction, deep learning, correlation matrix, hyperparameter tuning, metaheuristics
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined