Excess noise in highly reflective crystalline mirror coatings

arxiv(2022)

引用 0|浏览3
暂无评分
摘要
Thermodynamically induced length fluctuations of high-reflectivity mirror coatings put a fundamental limit on sensitivity and stability of precision optical interferometers like gravitational wave detectors and ultra-stable lasers. The main contribution - Brownian thermal noise - is related to the mechanical loss of the coating material. Owing to their low mechanical losses, Al\textsubscript{0.92}Ga\textsubscript{0.08}As/GaAs crystalline mirror coatings are expected to reduce this limit. At room temperature they have demonstrated lower Brownian thermal noise than with conventional amorphous coatings. %However, no detailed study on the noise constituents from these coatings in optical interferometers has been conducted. We present a detailed study on the spatial and temporal noise properties of such coatings by using them in two independent cryogenic silicon optical Fabry-Perot resonators operated at 4 K, 16 K and 124 K. We confirm the expected low Brownian thermal noise, but also discover two new noise sources that exceed the Brownian noise: birefringent noise that can be canceled via polarization averaging and global excess noise (10 dB above Brownian noise). These new noise contributions are a barrier to improving ultra-stable lasers and the related performance of atomic clocks, and potentially limit the sensitivity of third-generation gravitational wave detectors. Hence, they must be considered carefully in precision interferometry experiments using similar coatings based on semiconductor materials.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要