Insights into the accumulation, distribution and toxicity of pyrene associated with microplastics in rice (Oryza sativa L.) seedlings.

Chemosphere(2022)

引用 0|浏览20
暂无评分
摘要
Microplastic and polycyclic aromatic hydrocarbons (PAHs) can be introduced into agroecosystems through various agricultural activities and may threaten food safety and human health. However, little research has focused on the behavior of microplastics-associated PAHs and their toxicity effects in agroecosystems, especially in crops. In the present study, we investigated the accumulation, distribution and toxicity of pyrene associated with polyethylene (PE) microplastics in rice (Oryza sativa L.). With quantitative analysis using 14C isotope labelling, the total accumulation efficiency of 14C-pyrene in rice seedlings was 22.4 ± 1.2% and 14.5 ± 0.3% when exposed to freely dissolved pyrene and PE-associated pyrene, respectively. The translocation of 14C-pyrene was significantly decreased by microplastics adsorption even when the amount of pyrene in the rice roots had no significant difference. Subcellular distribution of 14C-pyrene in rice suggested that PE microplastics-associated pyrene located more on cell walls than free dissolved pyrene. Furthermore, results showed free pyrene, but not PE-associated pyrene, significantly decreased the length and biomass of rice roots as well as increased the activities of antioxidant enzymes (superoxide dismutase and catalase). It indicated that the association with microplastics alleviated the phytotoxicity of pyrene in rice seedlings. These findings shed new light on the environmental behavior and effects of PAHs associated with microplastics in crops and will be helpful to its comprehensive risks assessment.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要