An OSSE Study of the Impact of Micropulse Differential Absorption Lidar (MPD) Water Vapor Profiles on Convective Weather Forecasting

Monthly Weather Review(2022)

引用 0|浏览6
暂无评分
摘要
Abstract The National Center for Atmospheric Research (NCAR) and Montana State University jointly developed water vapor micropulse differential absorption lidars (MPDs) that are a significant advance in eye-safe, unattended, lidar-based water vapor remote sensing. MPD is designed to provide continuous vertical water vapor profiles with high vertical (150 m) and temporal resolution (5 min) in the lower troposphere. This study aims to investigate MPD observation impacts and the scientific significance of MPDs for convective weather analyses and predictions using observation system simulation experiments (OSSEs). In this study, the Data Assimilation Research Testbed (DART) and the Advanced Research version of the Weather Research and Forecasting (WRF-ARW) Model are used to conduct OSSEs for a case study of a mesoscale convective system (MCS) observed during the Plains Elevated Convection At Night (PECAN) experiment. A poor-performing control simulation that was drawn from a 40-member ensemble at 3-km resolution is markedly improved by assimilation of simulated observations drawn from a more skillful simulation that served as the nature run at 1-km resolution. In particular, assimilating surface observations corrected surface warm front structure errors, while MPD observations remedied errors in low- to midlevel moisture ahead of the MCS. Collectively, these analyses changes led to markedly improved short-term predictions of convection initiation, evolution, and precipitation of the MCS in the simulations on 15 July 2015. For this case study, the OSSE results indicate that a more dense MPD network results in better prediction performance for convective precipitation while degrading light precipitation prediction performance due to an imbalance of the analysis at large scales.
更多
查看译文
关键词
Deep convection,Lidars,Lidar observations,Profilers,atmospheric,Remote sensing,Numerical weather prediction,forecasting,Data assimilation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要