谷歌Chrome浏览器插件
订阅小程序
在清言上使用

A Novel 3D Helical Microelectrode Array for In Vitro Extracellular Action Potential Recording

MICROMACHINES(2022)

引用 3|浏览16
暂无评分
摘要
Recent advances in cell and tissue engineering have enabled long-term three-dimensional (3D) in vitro cultures of human-derived neuronal tissues. Analogous two-dimensional (2D) tissue cultures have been used for decades in combination with substrate integrated microelectrode arrays (MEA) for pharmacological and toxicological assessments. While the phenotypic and cytoarchitectural arguments for 3D culture are clear, 3D MEA technologies are presently inadequate. This is mostly due to the technical challenge of creating vertical electrical conduction paths (or 'traces') using standardized biocompatible materials and fabrication techniques. Here, we have circumvented that challenge by designing and fabricating a novel helical 3D MEA comprised of polyimide, amorphous silicon carbide (a-SiC), gold/titanium, and sputtered iridium oxide films (SIROF). Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) testing confirmed fully-fabricated MEAs should be capable of recording extracellular action potentials (EAPs) with high signal-to-noise ratios (SNR). We then seeded induced pluripotent stems cell (iPSC) sensory neurons (SNs) in a 3D collagen-based hydrogel integrated with the helical MEAs and recorded EAPs for up to 28 days in vitro from across the MEA volume. Importantly, this highly adaptable design does not intrinsically limit cell/tissue type, channel count, height, or total volume.
更多
查看译文
关键词
3D microelectrode,microelectrode arrays,iPSC sensory neurons,3D cell culture
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要