The Tumor Suppressor Protein TRAF3 Modulates GSK3 Activity and Susceptibility of B Lymphoma Cells to GSK3 Inhibition

CANCERS(2022)

引用 1|浏览2
暂无评分
摘要
Simple Summary TRAF3 is an adapter protein that regulates signals through many receptors important for B cell differentiation and function. Loss-of-function mutations or deletions of TRAF3 are common in B cell malignancies. Glycogen Synthase Kinase 3 (GSK3) regulates signaling in growth, survival, and metabolism pathways. GSK3 inhibitors have been effective against many solid tumors; the inhibitor used in this work is currently being tested for efficacy against BCLs. We found that TRAF3 and GSK3 associate in multiple BCL cell lines, and that BCLs with low TRAF3 have a higher susceptibility to GSK3 inhibition. In contrast to BCL cell lines, GSK3 inhibition has little effect on TRAF3-sufficient and deficient resting primary B cells. These results suggest TRAF3 level as a predictor of BCL responsiveness to GSK3 inhibitor therapy. TNF receptor-associated factor 3 (TRAF3) is an adapter protein that inhibits many signals that promote B cell survival and activation. Mice with a B cell-specific TRAF3 deficiency and humans with a rare haploinsufficiency in TRAF3 have enhanced development of BCLs as they age. Loss-of-function mutations in TRAF3 are common in B cell malignancies. Recent studies show that pharmacological inhibition of the enzyme glycogen synthase kinase 3 (GSK3), which regulates cellular growth, survival, and metabolism, inhibits growth and survival of BCL-derived B cells. In this study, we found that TRAF3 and GSK3 associated in B cells. The relative levels of TRAF3 in BCL cell lines correlated positively with the ratio of inactive to total GSK3 beta, and negatively correlated with susceptibility to GSK3 inhibition by the GSK3 inhibitory drug 9-ING-41, currently in clinical trials. Uniquely in BCLs with low TRAF3, GSK3 inhibition caused increased loss of the TRAF3-regulated, anti-apoptotic protein Mcl-1. GSK3 inhibition also blocked hyperresponsiveness to IL-6 receptor signaling in TRAF3-deficient BCL cells. Together, these results support the utility of 9-ING-41 as a treatment for BCL, and suggest that a decrease or loss of TRAF3 in BCLs could act as a biomarker for increased susceptibility to GSK3 inhibitor treatment.
更多
查看译文
关键词
B cell lymphoma, B cell survival, lymphomagenesis, GSK3, TRAF3
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要