Primary Culture of Porcine Retinal Pigment Epithelial Cells.

Journal of visualized experiments : JoVE(2022)

引用 0|浏览14
暂无评分
摘要
The retinal pigment epithelium (RPE) is a monolayer of polarized pigmented epithelial cells, located between the choroid and neuroretina in the retina. Multiple functions, including phagocytosis, nutrient/metabolite transportation, vitamin A metabolism, etc., are conducted by the RPE on a daily basis. RPE cells are terminally differentiated epithelial cells with little or no regenerative capacity. Loss of RPE cells results in multiple eye diseases leading to visual impairment, such as age-related macular degeneration. Therefore, the establishment of an in vitro culture model of primary RPE cells, which more closely resembles the RPE in vivo than cell lines, is critical for the characteristic and mechanistic studies of RPE cells. Considering the fact that the source of human eyeballs is limited, we create a protocol to culture primary porcine RPE cells. By using this protocol, RPE cells can be easily dissociated from adult porcine eyeballs. Subsequently, these dissociated cells attach to culture dishes/inserts, proliferate to form a confluent monolayer, and quickly re-establish key features of epithelial tissue in vivo within 2 wks. By qRT-PCR, it is demonstrated that primary porcine RPE cells express multiple signature genes at comparable levels with native RPE tissue, while the expressions of most of these genes are lost/highly reduced in human RPE-like cells, ARPE-19. Moreover, the immunofluorescence staining shows the distribution of tight junction, tissue polarity, and cytoskeleton proteins, as well as the presence of RPE65, an isomerase critical for vitamin A metabolism, in cultured primary cells. Altogether, we have developed an easy-to-follow approach to culture primary porcine RPE cells with high purity and native RPE features, which could serve as a good model to understand RPE physiology, study cell toxicities, and facilitate drug screenings.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要