Transcriptomic and proteomic time-course analyses based on Metascape reveal mechanisms against muscle atrophy in hibernating Spermophilus dauricus

Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology(2023)

引用 1|浏览6
暂无评分
摘要
Hibernating Spermophilus dauricus is resistant to muscle atrophy. Comprehensive transcriptome and proteome time-course analyses based on Metascape can further reveal the underlying processes (pre-hibernation stage, PRE; torpor stage, TOR; interbout arousal stage, IBA; and post-hibernation stage, POST). Transcriptome analysis showed that the cellular responses to growth factor stimulus and discrete oxygen levels continuously changed during hibernation. Proteomic analysis showed that neutrophil degranulation, sulfur compound metabolic process, and generation of precursor metabolites and energy continuously changed during hibernation. Molecular complex detection (MCODE) analysis in both transcriptome and proteome indicated that smooth muscle contraction was involved in the POST versus IBA stage, and peroxisome proliferator-activated receptor delta (Ppard), Myc proto-oncogene (Myc), Sp1 transcription factor (Sp1), and nuclear factor Kappa B subunit 1 (NFκB1) are the common TFs during the hibernation process. Integrated transcriptome and proteome analyses found 18 molecules in the TOR versus PRE stage, 1 molecule in the IBA versus TOR stage, and 16 molecules in the POST versus IBA stage. Among these molecules, carnitine palmitoyltransferase 1A (Cpt1a), SET and MYND domain containing 2 (Smyd2), four and a half LIM domains 1(Fhl1), reactive oxygen species modulator 1 (Romo1), and translocase of the inner mitochondrial membrane 50 (Timm50) were testified by Western blot. In conclusion, novel muscle atrophy resistance mechanisms can be deciphered by time-course transcriptome and proteome analyses based on Metascape.
更多
查看译文
关键词
Transcriptome,Proteome,Hibernation,Spermophilus dauricus
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要