Chrome Extension
WeChat Mini Program
Use on ChatGLM

Tuning Dehalogenative Coupling of Br 2 Py on Bimetallic Templates.

Langmuir : the ACS journal of surfaces and colloids(2022)

Cited 1|Views18
No score
Abstract
Considerable attention has been paid to on-surface Ullmann coupling during the past decade owing to the feasible synthesis of artificial nanostructures. While previous reports mainly concentrated on coupling reactions on single-metal-atom surfaces, herein we present the Ullmann coupling of 2,7-dibromopyrene (BrPy) on bimetallic surfaces, Bi-Ag(111) and Bi-Au(111), respectively, with scanning tunneling microscopy (STM) and X-ray photoemission spectroscopy (XPS). On the Bi-decorated Ag(111), self-assembly of intact BrPy is realized due to the reduced activity at the interface. Subsequent annealing promotes the dehalogenation of BrPy on Bi-Ag(111), while Bi adatoms do not bring any visible influence on coupling reactions. Furthermore, post-deposition of Bi onto preassembled nanostructures on Ag(111) immediately initiates the Ullmann coupling by inducing more Ag adatoms available on the surface, while stepwise annealing afterward leads to complete polymerization and formation of covalent chains with lateral displacement compared to that on the bare Ag(111), probably due to the space hindrance and confinement. For Bi-Au(111) with the modified reconstruction, higher-temperature annealing is required to trigger Ullmann coupling compared to that on Au(111). The exception is that the C-C coupling reaction remains impervious to Bi adatoms, and recovery of the Bi-Au reconstruction is realized after intensive annealing. In principle, bimetallic surfaces herein present intriguing behavior toward the controllable Ullmann coupling, and this report might provide different insights into the comprehensive atomistic elucidation of reaction mechanisms as well as the design of a new platform to effectively regulate Ullmann coupling.
More
Translated text
Key words
dehalogenative coupling,bimetallic templates
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined