m6A modification confers thermal vulnerability to HPV E7 oncotranscripts via reverse regulation of its reader protein IGF2BP1 upon heat stress

Cell Reports(2022)

引用 8|浏览16
暂无评分
摘要
Human papillomavirus (HPV)-induced carcinogenesis critically depends on the viral early protein 7 (E7), mak-ing E7 an attractive therapeutic target. Here, we report that the E7 messenger RNA (mRNA)-containing onco-transcript complex can be selectively targeted by heat treatment. In HPV-infected cells, viral E7 mRNA is modified by N6-methyladenosine (m6A) and stabilized by IGF2BP1, a cellular m6A reader. Heat treatment downregulates E7 mRNA and protein by destabilizing IGF2BP1 without the involvement of canonical heat -shock proteins and reverses HPV-associated carcinogenesis in vitro and in vivo. Mechanistically, heat treatment promotes IGF2BP1 aggregation only in the presence of m6A-modified E7 mRNA to form distinct heat-induced m6A E7 mRNA-IGF2BP1 granules, which are resolved by the ubiquitin-proteasome system. Collectively, our results not only show a mutual regulation between m6A RNA and its reader but also provide a heat-treatment-based therapeutic strategy for HPV-associated malignancies by specifically downregulat-ing E7 mRNA-IGF2BP1 oncogenic complex.
更多
查看译文
关键词
CP: Molecular biology,CP: Cancer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要