Novel Scintillating Nanoparticles for Potential Application in Photodynamic Cancer Therapy

PHARMACEUTICS(2022)

引用 2|浏览20
暂无评分
摘要
The development of X-ray-absorbing scintillating nanoparticles is of high interest for solving the short penetration depth problem of visible and infrared light in photodynamic therapy (PDT). Thus, these nanoparticles are considered a promising treatment for several types of cancer. Herein, gadolinium oxide nanoparticles doped with europium ions (Gd2O3:Eu3+) were obtained by using polyvinyl alcohol as a capping agent. Hybrid silica nanoparticles decorated with europium-doped gadolinium oxide (SiO2-Gd2O3:Eu3+) were also prepared through the impregnation method. The synthesized nanoparticles were structurally characterized and tested to analyze their biocompatibility. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy confirmed the high crystallinity and purity of the Gd2O3:Eu3+ particles and the homogeneous distribution of nanostructured rare earth oxides throughout the fumed silica matrix for SiO2-Gd2O3:Eu3+. Both nanoparticles displayed stable negative zeta-potentials. The photoluminescence properties of the materials were obtained using a Xe lamp as an excitation source, and they exhibited characteristic Eu3+ bands, including at 610 nm, which is the most intense transition band of this ion. Cytotoxicity studies on mouse glioblastoma GL261 cells indicated that these materials appear to be nontoxic from 10 to 500 mu g center dot mL(-1) and show a small reduction in viability in non-tumor cell lines. All these findings demonstrate their possible use as alternative materials in PDT.
更多
查看译文
关键词
nanoparticles,rare earth oxides,photodynamic therapy,cancer,nanosilica
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要