Chrome Extension
WeChat Mini Program
Use on ChatGLM

Enhanced corrosion resistance in an inflammatory environment and osteogenic properties of silicalite-1 coated titanium alloy implants.

Colloids and surfaces. B, Biointerfaces(2022)

Cited 1|Views17
No score
Abstract
The corrosion resistance and osteogenic property of titanium-based implants are crucial for their clinical application. Although they have good stability in standard physiological solutions, limited corrosion resistance in the inflammatory environment is still an unavoidable problem. Herein, the calcined and uncalcined silicalite-1 coatings were synthesized on titanium alloy (Ti-6Al-4 V). The corrosion resistance was investigated by simulating an inflammatory environment in vitro, and osteogenic potential was also evaluated. Here, the uncalcined silicalite-1 coating had the highest corrosion protection efficiency (PE) for Ti-6Al-4 V, which inhibited the metal ion release, surface damage and mass loss in the short-term (7 days) and long-term (30 days). Moreover, positive cell responses, including adhesion, proliferation and osteogenic differentiation of MC3T3-E1 cells, were observed in the uncalcined silicalite-1 coating system, supporting its favorable biocompatibility and osteogenic property. Therefore, these findings indicate that the uncalcined silicalite-1 may be a promising coating strategy for the surface modification of Ti-6Al-4 V implants.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined