Progress on nuclear reaction rates affecting the stellar production of 26Al

Journal of Physics G: Nuclear and Particle Physics(2022)

引用 2|浏览27
暂无评分
摘要
Abstract The radioisotope 26Al is a key observable for nucleosynthesis in the Galaxy and the environment of the early Solar System. To properly interpret the large variety of astronomical and meteoritic data, it is crucial to understand both the nuclear reactions involved in the production of 26Al in the relevant stellar sites and the physics of such sites. These range from the winds of low- and intermediate-mass asymptotic giant branch (AGB) stars; to massive and very massive stars, both their Wolf-Rayet (WR) winds and their final core-collapse supernovae (CCSN); and the ejecta from novae, the explosions that occur on the surface of a white dwarf accreting material from a stellar companion. Several reactions affect the production of 26Al in these astrophysical objects, including (but not limited to) 25Mg(p,γ)26Al, 26Al(p,γ)27Si, and 26Al(n,p/α). Extensive experimental effort has been spent during recent years to improve our understanding of such key reactions. Here we present a summary of the astrophysical motivation for the study of 26Al, a review of its production in the different stellar sites, and a timely evaluation of the currently available nuclear data. We also provide recommendations for the nuclear input into stellar models and suggest relevant, future experimental work.
更多
查看译文
关键词
stellar production,nuclear reaction rates,<sup>26</sup>al
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要