SiO2 etching and surface evolution using combined exposure to CF4/O2 remote plasma and electron beam

Journal of Vacuum Science & Technology A(2022)

引用 1|浏览2
暂无评分
摘要
Electron-based surface activation of surfaces functionalized by remote plasma appears like a flexible and novel approach to atomic scale etching and deposition. Relative to plasma-based dry etching that uses ion bombardment of a substrate to achieve controlled material removal, electron beam-induced etching (EBIE) is expected to reduce surface damage, including atom displacement, surface roughness, and undesired material removal. One of the issues with EBIE is the limited number of chemical precursors that can be used to functionalize material surfaces. In this work, we demonstrate a new configuration that was designed to leverage flexible surface functionalization using a remote plasma source, and, by combining with electron beam bombardment to remove the chemically reacted surface layer through plasma-assisted electron beam-induced etching, achieve highly controlled etching. This article describes the experimental configuration used for this demonstration that consists of a remote plasma source and an electron flood gun for enabling electron beam-induced etching of SiO2 with Ar/CF4/O2 precursors. We evaluated the parametric dependence of SiO2 etching rate on processing parameters of the flood gun, including electron energy and emission current, and of the remote plasma source, including radiofrequency source power and flow rate of CF4/O2, respectively. Additionally, two prototypical processing cases were demonstrated by temporally combining or separating remote plasma treatment and electron beam irradiation. The results validate the performance of this approach for etching applications, including photomask repair and atomic layer etching of SiO2. Surface characterization results that provide mechanistic insights into these processes are also presented and discussed.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要