Impacts of Chemical Reaction and Electric Field with Cattaneo-Christov Theories on Peristaltic Transport of a Hyperbolic Micropolar Nanofluid

Egyptian Journal of Chemistry(2023)

引用 0|浏览1
暂无评分
摘要
The current investigation described the influences of Cattaneo - Christov heat flux, Soret and Dufour, Hall current. The vertical alternating current produces an electric field is applied on the peristaltic flow of non - Newtonian micropolar nanofluid. The fluid flows inside a tapered stenosed artery. The non - Newtonian fluid obeys the tangent hyperbolic model. The effects of heat generation absorption, joule heating, thermal radiation, chemical reaction, and the permeability of the porous medium are imposed. The slip velocity and thermal slip conditions are assumed. The convective conditions for nanoparticles concentration as well as concentration are constructed. The coupled differential systems of equations yield Soret and Dufour feature. The assumption of the long wavelength with low Reynolds number is employed to simplify the governing equations of fluid motion to be ordinary differential equations. Furthermore, the obtained analytical solutions of these equations are based mainly on applying regular perturbation method together with homotopy perturbation method (HPM). The impacts of the various physical parameters on the axial velocity, spin velocity, temperature, nanoparticles concentration and concentration are illustrated and drawn graphically via a set of graphs. It is noticed that the velocity dwindled with an enriching in the magnitudes of both Hartman number, and electromagnetic parameter. Whereas, the axial velocity elevates with an enlargement in Darcy number, tapering angle, and Hall parameter. Moreover, the spin velocity declines with the increment in the microrotation parameter. Also, it is found that the escalating in thermal relaxation time causes a decaying impact on the temperature. Furthermore, enhancement in the nano Biot number leads to a declination in the magnitude of nanoparticles concentration. The current analytical study is very significant in several medical implementations, like the gastric juice motion in the small intestine when an endoscope is inserted through it.
更多
查看译文
关键词
Cattaneo,Christov heat flux,Hall current,Electrohydrodynamics,Stenosis,Micropolar,Nanofluid
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要