Simultaneous removal of nitrate, nitrobenzene and aniline from groundwater in a vertical baffled biofilm reactor.

Chemosphere(2022)

Cited 1|Views14
No score
Abstract
The challenge of simultaneous removal of nitrobenzene (NB), aniline (AN) and nitrate from groundwater in a single bioreactor is mainly attributed to the persistence of AN to degradation with anoxic denitrification conditions. In this work, simultaneous removal of NB (100 μM), AN (100 μM) and nitrate (1 mM) was achieved within 8 h with a COD/N ratio of 8 in a vertical baffled biofilm reactor (VBBR). By setting DO concentration at 0.4-0.5 mg L-1 to create a micro-aerobic condition, NB removal rate was accelerated without accumulation of AN, and AN could serve as electron donors for denitrification after ring cleavage. High-throughput sequencing showed that biofilm was predominated by denitrifiers (Luteimonas, Planctomyces, Thiobacillus, Thauera and so on) and NB-degrading bacteria (Pseudomonas), and biodiversity varied vertically along the height of the reactor. A dominantly anaerobic pathway for reducing NB to AN was identified by PICRUSt analysis, as the predicted genes involved in aerobic transformation of NB were several magnitudes lower than those in the anaerobic pathway. This study provided a new insight to the role of oxygen in robust bioremediation groundwater contaminated with NB, AN and nitrate.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined