Lipid peroxide-derived short-chain aldehydes promote programmed cell death in wheat roots under aluminum stress

Journal of Hazardous Materials(2023)

引用 6|浏览11
暂无评分
摘要
Lipid peroxidation is a primary event in plant roots exposed to aluminum (Al) toxicity, which leads to the formation of reactive aldehydes. Current evidence demonstrates that the resultant aldehydes are integrated components of cellular damage in plants. Here, we investigated the roles of aldehydes in mediating Al-induced damage, particularly cell death, using two wheat genotypes with different Al resistances. Aluminum treatment significantly induced cell death, which was accompanied by decreased root activity and cell length. Al-induced cell death displayed granular nuclei and internucleosomal fragmentation of nuclear DNA, suggesting these cells underwent programmed cell death (PCD). During this process, caspase-3-like protease activity was extensively enhanced and showed a significant difference between these two wheat genotypes. Further experiments showed that Al-induced cell death was positively correlated with aldehydes levels. Al-induced representative diagnostic markers for PCD, such as TUNEL-positive nuclei and DNA fragmentation, were further enhanced by the aldehyde donor (E)-2-hexenal, but significantly suppressed by the aldehyde scavenger carnosine. As the crucial executioner of Al-induced PCD, the activity of caspase-3-like protease was further enhanced by (E)-2-hexenal but inhibited by carnosine in wheat roots. These results suggest that reactive aldehydes sourced from lipid peroxidation mediate Al-initiated PCD probably through activating caspase-3-like protease in wheat roots.
更多
查看译文
关键词
Al,PCD,ROS,FDA,TTC,PI,TUNEL,PBS,DAPI,LSD,CLP
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要