谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Paleowildfire at the end-Triassic mass extinction: Smoke or fire?

Global and Planetary Change(2022)

引用 3|浏览13
暂无评分
摘要
Polycyclic Aromatic Hydrocarbons (PAHs) are routinely used as proxies for wildfire in geological sediments associated with large igneous province (LIP) driven CO2 increases and mass extinction events. One example is the end-Triassic mass extinction event (ETE) driven by Earth's most laterally extensive LIP, the Central Atlantic Magmatic Province (CAMP). However, many PAH records often lack critical information including identifying specific source(s) of PAHs (e.g., pyrogenic vs. petrogenic), intensity of paleowildfire events, whether PAHs represent predominant smoke signals that can travel substantial distance from the burn origin, and if evidence of PAH as markers for soil erosion exists. To better understand ETE wildfire events, a detailed evaluation of PAH distributions from the Italcementi section in the Lombardy Basin, Italy covering the latest Rhaetian was undertaken. We report the best evidence of wildfire activity occurs above the initial carbon isotope excursion (CIE) which is routinely used to chemostratigraphically correlate between ETE sections, rather than within the initial CIE as evidenced at other sections. This wildfire event was intense, short-lived, and occurred during a calcification crisis and δ13Corg anomaly, thereby linking terrestrial and marine ecosystem stress. Evidence of a more prolonged but less intense wildfire event and/or evidence for smoke signals takes place above this interval before the onset of a second calcification crisis. By comparing PAH records from Italy, Greenland, Poland, the UK, and China, during the ETE, few sections show evidence for intense (i.e., higher-temperature) wildfire activity during the initial CIE. However, these investigated PAH records show prolonged increases in the low-molecular-weight (LMW) combustion-derived PAH phenanthrene. We interpret this to represent widespread (and possibly more intense) wildfire activity further from the deposition sites, since LMW combustion-derived PAHs are the major PAHs in smoke aerosols that can travel vast distances, and/or less intense wildfire activity that characteristically produce LMW combustion-derived PAHs. In comparing PAH data, we find widespread wildfire activity across multiple basins supporting wildfire activity was an important ecological stressor in the terrestrial realm during the ETE.
更多
查看译文
关键词
Polycyclic aromatic hydrocarbons,End-Triassic,Mass extinction,Central Atlantic Magmatic Province,Wildfire,Soil erosion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要