Electrospun Polylactic Acid-Based Fibers Loaded with Multifunctional Antibacterial Biobased Polymers

ACS APPLIED POLYMER MATERIALS(2022)

引用 6|浏览7
暂无评分
摘要
Here, we report the development of antibacterial and compostable electrospun polylactic acid (PLA) fibers by incorporation of a multifunctional biobased polymer in the process. The multifunctional polymer was synthesized from the bio-sourced itaconic acid building block by radical polymerization followed by click chemistry reaction with hydantoin groups. The resulting polymer possesses triazole and hydantoin groups available for further N-alkylation and chlorination reaction, which provide antibacterial activity . This polymer was added to the electrospinning PLA solution at 10 wt %, and fiber mats were successfully prepared. The obtained fibers were surface-modified through the accessible functional groups, leading to the corresponding cationictriazolium and N-halamine groups. The fibers with both antibacterial functionalities demonstrated high antibacterial act i v i t y against Gram-positive and Gram-negative bacteria. While the fiber s with cationic surface groups are only effective against Gram-positive bacteria (Staphylococcus epidermidis and Staphylococcus aureus), upon c hlorination, the activity against Gram-negative Escherichia coli and Pseudomonas aeruginosa is significantly improved . In addition, the compostability of the electrospun fibers was tested under industrial composting conditions, showing that the incorporation of the antibacterial polymer does not impede the disintegrability of the material. Overall, this study demonstrates the feasibility of this biobased multifunctional polymer as an antibacterial agent for biodegradable polymeric materials with potential application in medical uses.
更多
查看译文
关键词
poly(lactic acid), polyitaconates, biobased polymers, antimicrobial fibers, triazolium, N-halamine, compostability
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要