Water Efficiency Households Retrofit Proposal Based on Rainwater Quality in Acapulco, Mexico

WATER(2022)

引用 0|浏览7
暂无评分
摘要
Climate change, urbanization, and population growth, particularly in urban areas such as Acapulco, Mexico, put pressure on water availability, where although surrounded by water, the inhabitants lack enough good-quality water, especially in the rainy season. In addition, water scarcity, socioeconomic factors, and infrastructure problems limit the satisfaction of water demand in this context, e.g., operational issues in the water treatment plants and problems in the distribution network caused by hurricanes. The objectives of this research were: (i) to determine the rainwater quality in Acapulco, Mexico; (ii) to propose a domestic water efficiency retrofit (WER) design implementing a rainwater harvesting system (RWHS); and (iii) to determine the RWHS efficiency in terms of economic savings, considering rainwater's social acceptance for domestic consumptive uses. The WER design was developed in an SFH in Acapulco, Mexico. The RWHS catchment surface area was 29 m(2). The device comprises a first-rain separator (20 L) and a storage tank (1200 L). The rainwater harvesting potential (RWHP) was evaluated during the 2020 and 2021 rainy seasons, whereas the harvested rainwater quality (HRWQ) was analyzed in samples from 2021. Alkalinity, pH, electrical conductivity, total dissolved solids, chlorides, nitrates, sulfates, and heavy metals and potentially toxic metalloids were analyzed. Additionally, 168 surveys were applied to SFH owners to evaluate WER acceptance. Results showed that the RWHP was ca. 44 and 21 L/m(2) in 2020 and 2021, respectively. All the rainwater quality parameters met the World Health Organization guidelines for consumptive uses except for drinking water. The perception study showed a 95% willingness to adopt the WER. Due to the RWHP and the HRWQ, the WER of SFHs is a promising solution to address Acapulco hydric stress under the nature-based solutions approach.
更多
查看译文
关键词
nature-based solutions, rainwater harvesting system, water-sensitive cities, water stress, rainwater quality, water efficiency retrofit
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要