Chrome Extension
WeChat Mini Program
Use on ChatGLM

Rational Molecular Design Enables Efficient Blue TADF-OLEDs with Flexible Graphene Substrate

ADVANCED FUNCTIONAL MATERIALS(2022)

Cited 9|Views12
No score
Abstract
Observation of thermally activated delayed fluorescence (TADF) in conjugated systems redefined the molecular design approach to realize highly efficient organic light emitting diodes (OLEDs) in the early 2010s. Enabling effective reverse intersystem crossing (RISC) by minimizing the difference between singlet and triplet excited state energies (Delta E-ST) is proven to be a widely applicable and fruitful approach, which results in remarkable external quantum efficiencies (EQE). The efficacy of RISC in these systems is mainly dictated by the first-order mixing coefficient (lambda), which is proportional to spin-orbit coupling (H-SO) and inversely proportional to Delta E-ST. While minimizing Delta E-ST has been the focus of the OLED community over the last decade, the effect of H-SO in these systems is largely overlooked. Here, molecular systems with increased H-SO are designed and synthesized by substituting selected heteroatoms of high-performance TADF materials with heavy-atom selenium. A new series of multicolor TADF materials with remarkable EQEs are achieved. One of these materials, SeDF-B, results in pure blue emission with EQEs approaching 20%. Additionally, flexible graphene-based electrodes are developed for OLEDs and revealed to have similar performance as standard indium tin oxide (ITO) in most cases. These devices are the first report of TADF based OLEDs that utilize graphene-based anodes.
More
Translated text
Key words
2D materials,blue OLED,flexible OLED,graphene,graphene anodes,heavy atom effect,OLED,TADF
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined