Predicting Rapid Intensification in North Atlantic and Eastern North Pacific Tropical Cyclones Using a Convolutional Neural Network

WEATHER AND FORECASTING(2022)

引用 4|浏览7
暂无评分
摘要
This study develops a probabilistic model based on a convolutional neural network to predict rapid intensification (RI) in both North Atlantic and eastern North Pacific tropical cyclones (TCs). Coined "I-RI," an advantage of using a convolutional neural network to predict RI is that it is designed to learn from spatial fields, like two-dimensional satellite imagery, as well as scalar features. The resulting model RI probability output is validated against two operational RI guidances-an empirical and a deterministic method-to assess skill at predicting RI over 12-, 24-, 36-, 48-, and 72-h lead times. Results indicate that in North Atlantic TCs, AI-RI is more skillful at predicting RI over 12- and 24-h lead times compared to both operational RI guidances. In eastern North Pacific TCs, AI-RI is more skillful than the empirical operational RI guidance at most RI thresholds, but less skillful than the deterministic RI guidance at all thresholds. For TCs north of 15 degrees N, where the deterministic skill was lower, AI-RI was more skillful than the deterministic operational guidance for over half of the RI thresholds. It is also found that AI-RI struggles to reach the higher RI probabilities produced by both of the operational RI guidances in both basins. This work demonstrates that the two-dimensional structures within the satellite imagery of TCs and the evolution of these structures identified using the difference in satellite images, captured by a convolutional neural network, yield better 12-24-h indicators of RI than existing scalar assessments of satellite brightness temperature. Significance StatementThe purpose of this study is to develop a method to predict tropical cyclone rapid intensification using artificial intelligence. The developed model uses a convolutional neural network, which can identify features in satellite imagery that are indicative of rapid intensification. The results suggest that, compared with current operational rapid intensification models, a convolutional neural network approach is generally more skillful at predicting rapid intensification.
更多
查看译文
关键词
Tropical cyclones, Forecasting, Neural networks
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要