The failure propagation of weakly stable sediment: A reason for the formation of high-velocity turbidity currents in submarine canyons

Journal of Oceanology and Limnology(2022)

Cited 0|Views3
No score
Abstract
The long-distance movement of turbidity currents in submarine canyons can transport large amounts of sediment to deep-sea plains. Previous studies show obvious differences in the turbidity current velocities derived from the multiple cables damage events ranging from 5.9 to 28.0 m/s and those of field observations between 0.15 and 7.2 m/s. Therefore, questions remain regarding whether a turbid fluid in an undersea environment can flow through a submarine canyon for a long distance at a high speed. A new model based on weakly stable sediment is proposed (proposed failure propagation model for weakly stable sediments, WSS-PFP model for short) to explain the high-speed and long-range motion of turbidity currents in submarine canyons through the combination of laboratory tests and numerical analogs. The model is based on two mechanisms: 1) the original turbidity current triggers the destabilization of the weakly stable sediment bed and promotes the destabilization and transport of the soft sediment in the downstream direction and 2) the excitation wave that forms when the original turbidity current moves into the canyon leads to the destabilization and transport of the weakly stable sediment in the downstream direction. The proposed model will provide dynamic process interpretation for the study of deep-sea deposition, pollutant transport, and optical cable damage.
More
Translated text
Key words
turbidity current, excitation wave, dense basal layer, velocity, WSS-PFP model
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined