Transient Thermal Modeling of a Venusian Surface Thermopile Heat Flux Sensor

JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER(2023)

引用 0|浏览0
暂无评分
摘要
No AccessTechnical NotesTransient Thermal Modeling of a Venusian Surface Thermopile Heat Flux SensorKyle A. Rivera, Kevin R. Anderson and Michael T. PaukenKyle A. RiveraCalifornia State Polytechnic University, Pomona, California 91768*Graduate Student, Mechanical Engineering.Search for more papers by this author, Kevin R. AndersonCalifornia State Polytechnic University, Pomona, California 91768†Professor, Mechanical Engineering.Search for more papers by this author and Michael T. PaukenJet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109‡Principal Technologist, Advanced Thermal Concepts and Analysis.Search for more papers by this authorPublished Online:19 Sep 2022https://doi.org/10.2514/1.T6585SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Kliore A. J., Keating G. M. and Moroz V. I., “Venus International Reference Atmosphere,” Planetary and Space Science, Vol. 40, No. 4, 1985, pp. 573–573. https://doi.org/10.1016/0032-0633(92)90255-M Google Scholar[2] Kremic T., Ghail R., Gilmore M., Hunter G., Kiefer W., Limaye S., Pauken M. and Wilson C., “Seismic and Atmospheric Exploration of Venus (SAEVe) Final Report,” Lunar and Planetary Institute Contributions, June 2018, https://www.lpi.usra.edu/vexag/documents/reports/SAEVe-6-25-2018.pdf. Google Scholar[3] Pauken M., Smith K., Sujittosakul S., Li B., Firdosy S., Smrekar S. and Morgan P., “Venus Heat Flow Instrument Development,” 3rd International Workshop on Instrumentation for Planetary Mission, Vol. 1980, Oct. 2016, p. 4101. Google Scholar[4] Mocquet A., Rosenblatt P., Veronique D. and Olivier V., “The Deep Interior of Venus, Mars, and the Earth: A Brief Review and the Need for Planetary Surface-Based Measurements,” Planetary and Space Science, Vol. 59, No. 10, 2011, pp. 1048–1061. https://doi.org/10.1016/j.pss.2010.02.002 Google Scholar[5] Spohn T., Grott M., Knollenburg J., Zoest T. V., Kargl G., Smrekar S. E., Banerdt W. B. and Hudson T. L., “InSight: Measuring the Martian Heat Flow Using the Heat Flow and Physical Properties Package (HP3),” Proceedings from 43rd Lunar and Planetary Science Conference, LPI Contributions, 2012. Google Scholar[6] Beardsmore G. R., “Towards a Shallow Heat Flow Probe for Mapping Thermal Anomalies,” Proceedings of the Thirty-Seventh Workshop on Geothermal Reservoir Engineering, Stanford Univ. SGP-TR-194, Stanford, Jan. 2012, pp. 1–14. https://doi.org/10.1029/98JE01047 Google Scholar[7] Pollack J. B., Toon O. B. and Boese R., “Greenhouse Models of Venus’ High Surface Temperature, as Constrained by Pioneer Venus Measurements,” Journal of Geophysical Research: Space Physics, Vol. 85, No. A13, 1980, pp. 8223–8231. https://doi.org/10.1029/JA085iA13p08223 Google Scholar[8] Smrekar S. E. and Sotin C., “Constraints on Mantle Plumes on Venus: Implications for Volatile History,” Icarus, Vol. 217, No. 2, 2012, pp. 510–523. https://doi.org/10.1016/j.icarus.2011.09.011 Google Scholar[9] Bullock M. A. and Grinspoon D. H., “The Atmosphere and Climate of Venus,” Comparative Climatology of Terrestrial Planets, Univ. of Arizona Press, Tucson, AZ, 2013, pp. 19–54. https://doi.org/10.2458/azu_uapress_9780816530595-ch002 CrossrefGoogle Scholar[10] Tomasko M. G., Doose L. R., Smith P. H. and Odell A. P., “Measurements of the Flux on Sunlight in the Atmosphere of Venus,” Journal of Geophysical Research: Space Physics, Vol. 85, No. A13, 1980, pp. 8167–8186. https://doi.org/10.1029/JA085iA13p08167 Google Scholar[11] Incropera F. P., DeWitt D. P., Bergman T. L. and Lavine A. S., Fundamentals of Heat and Mass Transfer, 7th ed., Wiley, New York, 2011. Google Scholar[12] Rivera K., Anderson K. A. and Pauken M., “Transient Heat Transfer Modeling of a Thermopile Type Planetary Heat Flux Sensor on the Surface of Venus,” AIAA SciTech 2020 Forum, AIAA Paper 2020-0983, 2020. https://doi.org/10.2514/6.2020-0983 LinkGoogle Scholar Previous article FiguresReferencesRelatedDetails What's Popular Volume 37, Number 2April 2023 CrossmarkInformationCopyright © 2022 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-6808 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsConvectionHeat TransferThermal Control and ProtectionThermal EffectsThermal Modeling and AnalysisThermal RadiationThermochemistry and Chemical KineticsThermodynamic PropertiesThermodynamicsThermoelectric EffectThermophysical PropertiesThermophysics and Heat Transfer KeywordsThermal ModelingHeat Flux SensorHeat FluxThermal ConductivityNumerical Heat TransferANSYSCFDEmissivityRayleigh NumberThermoelectric EffectPDF Received1 February 2022Accepted26 August 2022Published online19 September 2022
更多
查看译文
关键词
heat flux,sensor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要