Catalytic Effects of Silver in Iodine Reactors for Dissolved Used Nuclear Fuel

Jarrod M. Gogolski, Kathryn M. L. Taylor-Pashow,Tracy S. Rudisill, Michael L. Restivo, John M. Pareizs,Robert J. Lascola,Patrick E. O'Rourke, William E. Daniel

NUCLEAR TECHNOLOGY(2022)

引用 0|浏览0
暂无评分
摘要
The dissolution of used nuclear fuel generates a variety of off-gasses including flammable hydrogen and other species that are a concern for environmental release. The H-Canyon facility at the Savannah River Site is currently dissolving aluminum-clad research reactor fuel from material test reactors and the High Flux Isotope Reactor (HFIR) using a mercury-catalyzed nitric acid flowsheet. Savannah River National Laboratory recently developed and deployed a Raman spectrometer to monitor the off-gas stream from the dissolution process. Results from these measurements indicated a lack of the expected hydrogen, nitrous oxide, and nitric oxide in the off-gas stream. It was proposed that the silver on the silver nitrate-coated berl saddles present in the reactors for iodine capture were acting as a catalytic hydrogen recombiner. Nitric oxide is readily oxidized to nitrogen dioxide under normal conditions, but it was unclear what happened to the nitrous oxide. A laboratory-scale iodine reactor was assembled and filled with silver nitrate-coated berl saddles to help ascertain the fate of nitrous oxide and hydrogen. Testing with this laboratory-scale reactor observed the recombination of hydrogen when a simulated dissolver off-gas was passed through the reactor containing silver nitrate-coated berl saddles at the approximate temperatures seen in H-Canyon. However, the nitrous oxide concentration was unchanged, suggesting a more complex process occurring within the off-gas stream before it reaches the iodine reactors at H-Canyon.
更多
查看译文
关键词
Iodine reaction, hydrogen recombination, NOx gases
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要