Thermal and photoperiodic requirements of the seedling stage of three tropical forest species

JOURNAL OF FORESTRY RESEARCH(2022)

Cited 3|Views4
No score
Abstract
Air temperature and photoperiod play an important role in the seedling development for tropical forest species. Both variables are sensitive to climate, and so evaluating thermal and photoperiodic effects on seedling development is fundamental, especially for climate change studies. Methods to quantify thermal time and the energy required for plants to reach a development stage include air temperature and cardinal temperatures. The photoperiod will also affect physiological reactions of a plant and thus its development. Here we evaluated the six thermal time methods widely used to compute thermal requirement, and identified the influence of the photoperiod from the 2015 and 2016 growing seasons and 12 sowing dates in Itajubá, Minas Gerais state, Brazil, on seedling development of three native tropical forest species Psidium guajava L. (Myrtaceae), Citharexylum myrianthum Cham. (Verbenaceae), and Bixa orellana L. (Bixaceae). The method used to quantify thermal time influenced the analytical results of seedling development; the one that considered three cardinal temperatures and compared them with the mean air temperature (Method 5) performed better in computing thermal requirements. The influence of photoperiod on seedling development was inconclusive for the three species, but all three developed better in mild temperatures (between 13.3 °C and 26.9 °C) with a photoperiod shorter than 13 h.
More
Translated text
Key words
Phyllochron, Thermal time, Day length, Seedling stage, Phenology
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined