The co-pyrolysis interactionsof isolated lignins and cellulose by experiments and theoretical calculations

Energy(2022)

Cited 5|Views3
No score
Abstract
The development of biofuels from waste biomass pyrolysis is inhibited due to the unclear interactions of lignin structures and cellulose. Here, the co-pyrolysis of isolated lignins and cellulose was fully explored. The levoglucosan production from the co-pyrolysis of cellulose and pine lignin reduced about 1 time as compared to pure cellulose pyrolysis. Contrarily, the contents of levoglucosan and phenolic compounds were improved via adding poplar or bamboo lignins. The high contents of C–C bonds (58.0%) and G-type structure were contained in pine lignin. The high contents of C–O bonds (36.6%) and the G-H-type structures were involved in poplar lignin, and the high contents of O–CO bonds (3.4%) and the G-H-S-type structures were concluded in bamboo lignin. Theoretical calculations revealed that the C–C bonds had higher bond energy than the C–O–C bonds. A carbon-rich pool could be formed via the pyrolysis of pine lignin due to the high contents of C–C bonds, which could cause the secondary cracking of targeted products. The oxygen-enriched pool could be produced by the pyrolysis of poplar or bamboo lignins due to the high contents of C–O bonds, thus promoting the formation of levoglucosan and phenols compounds during co-pyrolysis.
More
Translated text
Key words
Biomass compositions,Co-pyrolysis,Carbon-enriched pool,Oxygen-enriched pool,Pyrolytic products
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined