Toxicity warning and online monitoring of disinfection by-products in water by electroautotrophic biocathode sensors

Biosensors and Bioelectronics(2023)

引用 2|浏览11
暂无评分
摘要
As a result of the 2019 coronavirus pandemic, disinfection byproducts generated by the extensive use of chlorine disinfectants have infiltrated the aquatic environment, severely threatening ecological safety and human health. Therefore, the accurate monitoring of the biotoxicity of aqueous environments has become an important issue. Biocathode sensors are excellent choices for toxicity monitoring because of their special electroautotrophic respiration functions. Herein, a novel electroautotrophic biosensor with rapid, sensitive, and stable response and quantifiable output was developed. Its toxicity response was tested with typical disinfection byproducts dichloromethane, trichloromethane, and combinations of both, and corresponding characterization models were developed. Repeated toxicity tests demonstrated that the sensor was reusable rather being than a disposable consumable, which is a prerequisite for its long-term and stable operation. Microbial viability confirmed a decrease in sensor sensitivity due to microbial stress feedback to the toxicants, which is expected to be calibrated in the future by the standardization of the biofilms. Community structure analysis indicated that Moheibacter and Nitrospiraceae played an important role in the toxic response to chlorine disinfection byproducts. Our research provides technical support for protecting the environment and safeguarding water safety for human consumption and contributes new concepts for the development of novel electrochemical sensors.
更多
查看译文
关键词
Biocathode sensor,Dichloromethane,Trichloromethane,Toxic response,Sensitivity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要