Computational study of the structural ensemble of CC chemokine receptor type 5 (CCR5) and its interactions with different ligands.

PloS one(2022)

Cited 0|Views1
No score
Abstract
CC Chemokine receptor 5 (CCR5), a member of the Superfamily of G Protein-Coupled Receptors (GPCRs), is an important effector in multiple physiopathological processes such as inflammatory and infectious entities, including central nervous system neuroinflammatory diseases such as Alzheimer's disease, recovery from nervous injuries, and in the HIV-AIDS infective processes. Thus, CCR5 is an attractive target for pharmacological modulation. Since maraviroc was described as a CCR5 ligand that modifies the HIV-AIDS progression, multiple efforts have been developed to describe the functionality of the receptor. In this work, we characterized key structural features of the CCR5 receptor employing extensive atomistic molecular dynamics (MD) in its apo form and in complex with an endogenous agonist, the chemokine CCL5/RANTES, an HIV entry inhibitor, the partial inverse agonist maraviroc, and the experimental antagonists Compound 21 and 34, aiming to elucidate the structural features and mechanistic processes that constitute its functional states, contributing with structural details and a general understanding of this relevant system.
More
Translated text
Key words
chemokine receptor type,ccr5,ligands,structural ensemble
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined