Exploring the use of data compression for accelerating machine learning in the edge with remote virtual graphics processing units

Concurrency and Computation: Practice and Experience(2022)

引用 0|浏览10
暂无评分
摘要
Internet of Things (IoT) devices are usually low performance nodes connected by low bandwidth networks. To improve performance in such scenarios, some computations could be done at the edge of the network. However, edge devices may not have enough computing power to accelerate applications such as the popular machine learning ones. Using remote virtual graphics processing units (GPUs) can address this concern by accelerating applications leveraging a GPU installed in a remote device. However, this requires exchanging data with the remote GPU across the slow network. To address the problem with the slow network, the data to be exchanged with the remote GPU could be compressed. In this article, we explore the suitability of using data compression in the context of remote GPU virtualization frameworks in edge scenarios executing machine learning applications. We use popular machine learning applications to carry out such exploration. After characterizing the GPU data transfers of these applications, we analyze the usage of existing compression libraries for compressing those data transfers to/from the remote GPU. Our exploration shows that transferring compressed data becomes more beneficial as networks get slower, reducing transfer time by up to 10 times. Our analysis also reveals that efficient integration of compression into remote GPU virtualization frameworks is strongly required.
更多
查看译文
关键词
data compression,edge computing,GPU virtualization,machine learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要