谷歌Chrome浏览器插件
订阅小程序
在清言上使用

High-Speed Sirospun Conductive Yarn for Stretchable Embedded Knitted Circuit and Self-Powered Wearable Device

Advanced Fiber Materials(2022)

引用 13|浏览12
暂无评分
摘要
In the intelligent era, the textile technique is a high efficiency, mature and simple manufacturing solution capable of fabricating fully flexible wearable devices. However, the external circuit with its integration and comfort limitations cannot satisfy the requirements of intelligent wearable and portable devices. This study presents an industrialized production method to fabricate core–shell structure conductive yarn for direct textile use, prepared by the high-speed sirospun technique. Both integration and flexibility are significantly improved over previous works. Combining sirospun conductive yarn (SSCY) and the intarsia technique can provide the SSCY seamless and convenient embedded knitted circuit (SSCY-EKC) to form a full textile electrical element as the channel of power and signals transmission, allowing for a stable resistance change and wide strain range for meeting practical applications. SSCY based on the triboelectric nanogenerator (SSCY-TENG) can be designed as a caution carpet with attractive design and good washability for a self-powered sensor that recognizes human motions. Furthermore, intrinsic textile properties such as washability, softness, and comfort remained. With benefits such as excellent extension, fitting, and stretchability, the SSCY-EKC used herein can realize a fully flexible electrical textile with a high potential for physical detection, body gesture recognition, apparel fashion, and decoration. Graphical abstract
更多
查看译文
关键词
Sirospun technique,Embedded knitted circuit,Intarsia technique,Stretchable,Wearable devices
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要