Chrome Extension
WeChat Mini Program
Use on ChatGLM

Enhanced adaptive optics control with image to image translation.

International Conference on Uncertainty in Artificial Intelligence(2022)

Cited 3|Views16
No score
Abstract
We aim to significantly enhance the science return of astronomical observatories, and in particular giant terrestrial optical telescopes. Observatories employ Adaptive Optics (AO) systems in order to acquire high sensitivity diffraction limited images of the sky. The incumbent “workhorse” for control of AO systems employs a linear real-time controller in a closed loop, with sensing of state performed via a (Shack-Hartmann) wavefront sensor (WFS). The actuators of a deformable mirror (DM) are driven, with the action performed in each iteration having a continuous representation as an array of DC voltages. The typical control regime is practical and scalable, nonetheless, there remains a residual uncompensated turbulence that leads to optical aberrations limiting the class of scientific assets that can be acquired. We have developed and trained a translational GAN model that accurately estimates residual perturbations from WFS images. Model inference occurs in 0.34 milliseconds using off-the-shelf GPU hardware, and is applicable for use in AO control where the control loop might be running at 500Hz. We develop an AO control regime with a second controller stage actuating a second DM controlled in an open loop according to the estimated residual turbulence. Using the open-source COMPASS tool for simulation, we are able to significantly improve the performance using our new regime.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined