Improving the phase reconstruction accuracy of simultaneous phase-shifted lateral shearing interferometry using a polarization redundant sub-region interpolation method.

Optics express(2022)

引用 1|浏览1
暂无评分
摘要
In a simultaneous phase-shifted lateral shearing interferometry, a division of focal plane polarization camera is generally used as the phase-shifting device. However, acquiring simultaneous phase-shift interferograms in a single frame suffers from a lack of spatial resolution, significantly affecting the phase reconstruction accuracy. A polarization redundant sub-region interpolation (PRSI) method is proposed to solve this problem. This interpolation method distinguishes smooth regions from stripe fringe regions by calculating the polarization redundancy error of the synchronous phase shift interferogram. After sub-regional processing, resolution reconstruction is performed in the smoothed area using a fast convolutional bilinear interpolation method. In the streak detail region, the resolution reconstruction is performed based on the strength of the correlation between the orthogonal and non-orthogonal polarization channels crossing the streak region. The PRSI method can quickly reconstruct the lost pixels and accurately recover the stripe detail information. Experiment results show that the proposed interpolation method outperforms the existing dominant methods in terms of visual reconstruction effect and quantitative index of phase reconstruction.
更多
查看译文
关键词
lateral shearing interferometry,phase reconstruction accuracy,polarization,phase-shifted,sub-region
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要