Regulating the Configurational Entropy to Improve the Thermoelectric Properties of (GeTe)(1-x)(MnZnCdTe3)(x) Alloys

MATERIALS(2022)

引用 0|浏览10
暂无评分
摘要
In thermoelectrics, entropy engineering as an emerging paradigm-shifting strategy can simultaneously enhance the crystal symmetry, increase the solubility limit of specific elements, and reduce the lattice thermal conductivity. However, the severe lattice distortion in high-entropy materials blocks the carrier transport and hence results in an extremely low carrier mobility. Herein, the design principle for selecting alloying species is introduced as an effective strategy to compensate for the deterioration of carrier mobility in GeTe-based alloys. It demonstrates that high configurational entropy via progressive MnZnCdTe3 and Sb co-alloying can promote the rhombohedral-cubic phase transition temperature toward room temperature, which thus contributes to the enhanced density-of-states effective mass. Combined with the reduced carrier concentration via the suppressed Ge vacancies by high-entropy effect and Sb donor doping, a large Seebeck coefficient is attained. Meanwhile, the severe lattice distortions and micron-sized Zn0.6Cd0.4Te precipitations restrain the lattice thermal conductivity approaching to the theoretical minimum value. Finally, the maximum zT of Ge0.82Sb0.08Te0.90(MnZnCdTe3)(0.10) reaches 1.24 at 723 K via the trade-off between the degraded carrier mobility and the improved Seebeck coefficient, as well as the depressed lattice thermal conductivity. These results provide a reference for the implementation of entropy engineering in GeTe and other thermoelectric materials.
更多
查看译文
关键词
thermoelectric, GeTe, entropy engineering, phase transition, lattice distortion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要