谷歌浏览器插件
订阅小程序
在清言上使用

HNF1α transcriptional activation and repression maintain human islet α and β cell function

biorxiv(2022)

引用 0|浏览18
暂无评分
摘要
HNF1A haploinsufficiency underlies the most common form of human monogenic diabetes (HNF1A-MODY) and hypomorphic HNF1A variants confer type 2 diabetes risk, but a lack of experimental systems has limited our understanding of how the transcription factor HNF1α regulates adult human islet function. Here, we combined human islet genetics, RNA sequencing, Cleavage Under Targets & Release Using Nuclease (CUT&RUN) chromatin mapping, patch-clamp electrophysiology and transplantation-based assays to elucidate HNF1α-regulated mechanisms in mature pancreatic α and β cells. shRNA-mediated suppression of HNF1A in primary human pseudoislets led to blunted insulin output and dysregulated glucagon secretion both in vitro and after transplantation into immunocompromised mice, recapitulating phenotypes observed in HNF1A-MODY patients. These deficits corresponded with altered expression of genes encoding factors critical for hormone secretion, including calcium channel subunits, ATP-transporters and extracellular matrix constituents. Additionally, HNF1A loss led to upregulation of transcriptional repressors, providing evidence for a mechanism of transcriptional de-repression through HNF1α. CUT&RUN mapping of HNF1α DNA-binding sites in primary human islets verified that a subset of HNF1α-regulated genes were direct targets. These data provide unprecedented mechanistic links between HNF1A loss and diabetic phenotypes in mature human α and β cells. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要