谷歌浏览器插件
订阅小程序
在清言上使用

Classification of Ice-Induced Vibration Regimes of Offshore Wind Turbines

Volume 6: Polar and Arctic Sciences and Technology(2022)

引用 0|浏览1
暂无评分
摘要
Abstract Ice-induced vibrations of offshore wind turbines on monopile foundations were investigated experimentally at the Aalto Ice Tank. A real-time hybrid test setup was developed allowing to accurately simulate the motion of a wind turbine in interaction with ice, incorporating the multi-modal aspects of the interaction and the effect of simultaneous ice and wind loading. Different vibration patterns were observed where some could be described based on the common terminology of intermittent crushing or continuous brittle crushing. However, not all resulting vibrations could be described accordingly. A combination of several global bending modes interacting with the ice resulted in high global ice loads and structural response. Such response is likely typical for an offshore wind turbine, owing to the dynamic characteristics of the structure. The type of interaction observed during the tests would be most critical for design as the largest bending moments in critical cross-sections of the foundations occur for this regime. A classification of ice-induced vibrations is proposed which encompasses the experimental observations for offshore wind turbines on the basis of the periodicity in the structural response at the ice action point.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要