Characterization of CAP1 and ECA4 adaptors participating in clathrin-mediated endocytosis

biorxiv(2022)

引用 2|浏览12
暂无评分
摘要
Formation of endomembrane vesicles is crucial in all eukaryotic cells and relies on vesicle coats such as clathrin. Clathrin-coated vesicles form at the plasma membrane and the trans- Golgi Network. They contain adaptor proteins, which serve as binding bridges between clathrin, vesicle membranes, and cargoes. A large family of monomeric ANTH/ENTH/VHS adaptors is present in A. thaliana . Here, we characterize two homologous ANTH-type clathrin adaptors, CAP1 and ECA4, in clathrin-mediated endocytosis (CME). CAP1 and ECA4 are recruited to sites at the PM identified as clathrin-coated pits (CCPs), where they occasionally exhibit early bursts of high recruitment. Subcellular binding preferences of N- and C-terminal fluorescent protein fusions of CAP1 identified a functional adaptin-binding motif in the unstructured tails of CAP1 and ECA4. In turn, no function can be ascribed to a double serine phosphorylation site conserved in these proteins. Double knockout mutants do not exhibit deficiencies in general development or CME, but a contribution of CAP1 and ECA4 to these processes is revealed in crosses into sensitized endocytic mutant backgrounds. Overall, our study documents a contribution of CAP1 and ECA4 to CME in A. thaliana and opens questions about functional redundancy among non-homologous vesicle coat components. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
endocytosis,eca4 adaptors,cap1,clathrin-mediated
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要