Beta Oscillation Detector Design for Closed-Loop Deep Brain Stimulation of Parkinson’s Disease with Memristive Spiking Neural Networks

Zachary Kerman,Chunxiu Yu,Hongyu An

2022 23rd International Symposium on Quality Electronic Design (ISQED)(2022)

引用 1|浏览7
暂无评分
摘要
Deep Brain Stimulation (DBS) is a prominent treatment of Parkinson’s disease (PD) that sends stimulation signals into the brain. The Closed-Loop DBS (CL-DBS) is an adaptive DBS system sending optimized and dynamic stimulation signals in accordance with the PD symptoms. The CL-DBS system is implanted and carried by the patients all the time. Thus, it requires advanced intelligence and energy efficiency to maintain a 24/7 real-time operation. However, the state-of-the-art CL-DBS systems are implemented with the traditional integrated circuits that cannot meet these demands. To tackle this challenge, in this paper, we design a novel energy-efficient beta oscillation detector of the CL-DBS system using Spiking Neural Networks (SNNs) and memristive synapses. The proposed SNN-based beta oscillation detector is trained with PD model data and evaluated using experimental data from the PD rats. The improvement of our SNN-based CL-DBS detector is evaluated with the architecture-level simulator NeuroSIM. The reductions of the proposed system on the chip area, latency, and energy are 67.3%, 41.9%, and 11.7% by using memristive synapses compared to the traditional SRAM (6T).
更多
查看译文
关键词
Memristors,Spiking Neural Networks,Deep Brain Stimulation,Parkinson’s Disease,Neuromorphic Computing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要