Elastocaloric Properties of Polycrystalline Samples of NiMnGaCu Ferromagnetic Shape Memory Alloy under Compression: Effect of Improvement of Thermoelastic Martensitic Transformation

Francesca Villa, Emanuele Bestetti, Roberto Frigerio, Michele Caimi,Corrado Tomasi,Francesca Passaretti,Elena Villa

MATERIALS(2022)

引用 0|浏览5
暂无评分
摘要
Shape memory alloys (SMAs) and ferromagnetic shape memory alloys (FeSMAs) have recently attracted interest for solid state refrigeration applications. Among NiMnGa-based quaternary systems, NiMnGaCu exhibits an interesting giant magnetocaloric effect thanks to the overlapping of the temperatures related to the magnetic transition and the thermoelastic martensitic transformation (TMT); in particular, for compositions with Cu content of approximately 6 at%. In the present work, we investigated the improvement effect of TMT on the total entropy change (Delta S) in the elastocaloric performances of polycrystalline Ni50Mn18.5Cu6.5Ga25 at% alloy samples, just above room temperature. We report an extensive calorimetric and thermomechanical characterization to explore correlations between microstructural properties induced by the selected thermal treatment and elastocaloric response, aiming at providing the basis to develop more efficient materials based on this quaternary system. Both Delta T and Delta S values obtained from mechanical curves at different temperatures and strain recovery tests under fixed load vs. T were considered. Maximum values of Delta S = 55.9 J/KgK and Delta T = 4.5 K were attained with, respectively, a stress of 65 MPa and strain of 4%. The evaluation of the coefficient of performance (COP) was carried out from a cyclic test.
更多
查看译文
关键词
ferromagnetic shape memory alloys,NiMnGaCu,microstructure,mechanical properties,thermal analysis,elastocaloric effect
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要