Higher-spin Yang–Mills, amplitudes and self-duality

arxiv(2023)

引用 5|浏览2
暂无评分
摘要
The existence of interacting higher-spin theories is tightly constrained by many no-go theorems. In this paper, we construct a chiral, higher-spin generalization of Yang–Mills theory in flat space which avoids these no-go theorems and has non-trivial tree-level scattering amplitudes with some higher-spin external legs. The fields and action are complex, so the theory is non-unitary and parity-violating, yet we find surprisingly compact formulae for all-multiplicity tree-level scattering amplitudes in the maximal helicity violating (MHV) sector, where the two negative helicity particles have identical but arbitrary spin. This is possible because the theory admits a perturbative expansion around its self-dual sector. Using twistor theory, we prove the classical integrability of this self-dual sector and show that it can be described on spacetime by an infinite tower of interacting massless scalar fields. We also give a twistor construction of the full theory and use it to derive the formula for the MHV amplitude.
更多
查看译文
关键词
amplitudes,yang–mills,higher-spin,self-duality
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要