Suppression and Replacement Gene Therapy for KCNH2-Mediated Arrhythmias.

Circulation. Genomic and precision medicine(2022)

引用 1|浏览2
暂无评分
摘要
BACKGROUND:KCNH2-mediated arrhythmia syndromes are caused by loss-of-function (type 2 long QT syndrome [LQT2]) or gain-of-function (type 1 short QT syndrome [SQT1]) pathogenic variants in the KCNH2-encoded Kv11.1 potassium channel, which is essential for the cardiac action potential. METHODS:A dual-component "suppression-and-replacement" (SupRep) KCNH2 gene therapy was created by cloning into a single construct a custom-designed KCNH2 short hairpin RNA with ~80% knockdown (suppression) and a "short hairpin RNA-immune" KCNH2 cDNA (replacement). Induced pluripotent stem cell-derived cardiomyocytes and their CRISPR-Cas9 variant-corrected isogenic control (IC) induced pluripotent stem cell-derived cardiomyocytes were made for 2 LQT2- (G604S, N633S) and 1 SQT1- (N588K) causative variants. All variant lines were treated with KCNH2-SupRep or non-targeting control short hairpin RNA (shCT). The action potential duration (APD) at 90% repolarization (APD90) was measured using FluoVolt voltage dye. RESULTS:KCNH2-SupRep achieved variant-independent rescue of both pathologic phenotypes. For LQT2-causative variants, treatment with KCNH2-SupRep resulted in shortening of the pathologically prolonged APD90 to near curative (IC-like) APD90 levels (G604S IC, 471±25 ms; N633S IC, 405±55 ms) compared with treatment with shCT (G604S: SupRep-treated, 452±76 ms versus shCT-treated, 550±41 ms; P<0.0001; N633S: SupRep-treated, 399±105 ms versus shCT-treated, 577±39 ms, P<0.0001). Conversely, for the SQT1-causative variant, N588K, treatment with KCNH2-SupRep resulted in therapeutic prolongation of the pathologically shortened APD90 (IC: 429±16 ms; SupRep-treated: 396±61 ms; shCT-treated: 274±12 ms). CONCLUSIONS:We provide the first proof-of-principle gene therapy for correction of both LQT2 and SQT1. KCNH2-SupRep gene therapy successfully normalized the pathologic APD90, thereby eliminating the pathognomonic feature of both LQT2 and SQT1.
更多
查看译文
关键词
KCNH2,gene therapy,induced pluripotent stem cells,long QT syndrome,variant
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要