Permeability of Bone Scaffold with Different Pore Geometries Based on CFD Simulation

Norhana Jusoh, Muhammad Aqil Mustafa Kamal Arifin, Muhammad Hamizan Hilmi Sulaiman, Muhammad Aiman Mohd Zaki, Nurul Ammira Mohd Noh, Nur Afiqah Ahmad Nahran, Koshelya Selvaganeson, Amy Nurain Syamimi Ali Akbar

Journal of Medical Device Technology(2022)

引用 0|浏览0
暂无评分
摘要
Scaffold plays a significant role in promoting cells proliferation and differentiation in bone regeneration. Permeability is one of the factors that affect the function as it is able to extract waste and supply nutrients or oxygen. The aim of this study was to design different pore shapes and to simulate its fluid model in order to predict permeability value of the scaffold. There were few steps in this project which were scaffold design, fluid simulation analysis and permeability calculation. Three different pore shapes were designed, which were circle, triangle, and hexagon by using the Solidworks software. Each scaffold was designed by the combination of three unit cells. Then, Computational Fluid Dynamics (CFD) simulation in the Ansys Fluent software was conducted to obtain the pressure drop from the pressure distribution within the pores. The permeability of scaffold was obtained by applying Darcy's permeability formula at inlet velocity of 0.001 m/s, 0.01 m/s and 0.1 m/s. Based on the calculation, the permeability for hexagon pore shape were 3.96691x10-07 m2, 3.52 x10- 07 and 1.92 x10-07 for 0.001 m/s, 0.01 m/s and 0.1 m/s inlet velocity, respectively. Therefore, by increasing the inlet velocities, permeability decreased for all types of scaffolds. Furthermore. hexagon pore shape showed the highest permeability value when compared with triangle and circle’s pore shape. Nevertheless, all pore shapes demonstrated permeability values that within the range of natural bone permeability.
更多
查看译文
关键词
bone scaffold,different pore geometries,permeability
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要