Influence mechanism of Cu ion implantation on charge transport at PbZr0.52Ti0.48O3/FAPbI3 interface

Physica B-condensed Matter(2022)

Cited 0|Views0
No score
Abstract
The ferroelectric materials provide a way to improve and tune the photovoltaic performance of perovskite solar cells (PSCs), however, the improvement of device efficiency is limited by the interfacial electron transport. Here, we used ferroelectric PbZr 0.52 Ti 0.48 O 3 (PZT) as the electron transport layer (ETL) in PSCs and investigated the effect of ion Cu implantation modified PZT on interfacial charge transport. The experimental results indicate that Cu ion implantation can improve the interface charge transport performance of the device. Under the results of SRIM simulation and density functional theory (DFT) calculation analysis, ion implantation leads to the generation of band-edge states in PZT. The interfacial electronic structure affected by the Cu ion implantation enhances the extract of photogenerated carriers and promotes charge transfer at the interface, besides reducing the recombination probability of carriers in the interface, which are good explanations of experimental phenomena. • Cu ion implantation enhances the performance of PZT-based perovskite solar cells. • The bandgap of PZT modified by ion implantation is reduced. • Ion implantation can induce the generation of PZT band-edge states. • Interfacial electronic states enhanced charge transport at the interface. • The presence of defect levels promotes electron transfer from FAPbI 3 to PZT.
More
Translated text
Key words
cu ion implantation,charge transport
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined